	[image: image7.wmf]

	

	Företagsnamn/Company name
Volvo Truck Corporation
	Dokumentnamn/Name of document
Integration validation form v1.03 - Customer-Integrators name.doc
	Sida/Page
12 (12)

	Utfärdare (avd nr, namn, tfn, geo plac, sign)/Issuer (dept, name, phone, sign)
Transport Information Systems
	Datum/Date

	Utgåva/Issue

	Flik/Insert

	Reg nr/Reg. no.

	Ärende/Subject
Dynafleet Online - customer integration validation form

Mottagare (avd nr, namn, geo plac)/Receiver (dept, name)

Dynafleet Online
Customer integration validation form v 1.03
1
Integration validation procedure
3
1.1
Pre-Validation API usage form
3
1.1.1
Integration description
3
1.1.2
Use case description
5
1.2
Validation Period
6
1.3
Validation Result
6
2
Activation in production
7
3
Appendix A: Integration Description
8
4
Appendix B: Integration Use Cases
9

1 Integration validation procedure
1.1 Pre-Validation API usage form
Prior to the validation, a form needs to be filled in by the developer of the integration. The intention of this form is to serve as basis of the validation procedure. The form should cover general information about the integration as well as describe each use case or function in the integration that calls the Dynafleet Online API functions.
1.1.1 Integration description
The purpose of the integration description is to provide the validation team with the basic characteristics of the integration. Describe (at least):
· Time interval for Preprod traffic to be validated (date and time for beginning and end of the test – data traffic produced during this time period will be validated). At least 2 hours. Specify time zone.
· API user in Preproduction environment (the user name that has been registred)
· Integration client platform (e.g. Java / Microsoft .Net)
· Application type (e.g. batch run/event driven/mixed)
· Target fleet size (e.g. number of vehicles and drivers)
To also prepare for setting up the integration towards the production servers the following information is required.
· What API user name the integration wants to use in the Production environment.
· Which IP address on the internet the integration application will send the API requests from (we need the IP address to correctly open up our firewalls on the production servers).
· Which notifications that the integration is listening too and using. These have to be enabled individually per API user and therefore have to be set separately on the production servers.
Form that should be filled in can be found in Appendix A in this document.
Example of a filled in integration description:
[image: image8.png](min. 2 hours)

[image: image1.png]Time interval for Preproduction traffic to be validated (min. 48 hours)

From 20120508, 10:00
OPYYY-MM-DD, bhm)

To 20120511, 12:00 Q%
OYYYY-MM-DD,) e
Time Zone GIT +

(GHT 1)

[image: image2.png]APlabc

environment

[image: image3.png]Integration client platform Java SE5
Detals Java compiler Sun JDK 5 0 Update 7
WS compiler Sun JWSDP 2.0
AP stack JAXRPC 11
Runtime: Sun JRE5.0 Update 7 &y
Application type Mixed RS
Detals The integration client is a Java/Swing application where
the user can execute use cases arbitrarly: an intemal
‘counter has been implemented to avoid too frequent
callsto the Dynafleet API UC_A il be executed at
timed intervals, using a call history to calculate next
execution time
Target fleet size 30 vehicles, 50 drivers
Detals Fleet size s curently (Q2 2006) 20 vehicles and 35
drivers, but the fleetis expected to growto 30 vehicles
and 50 drivers in Q1 2007.

[image: image4.png]Wanted login name on APl user
in Production environment

NOTE one APl user for each customerfieet
usingthe itegration s needed, 3s esch API
users inked fo one fiet only.

MyAPluser

Wanted API user password
(canbe modifed iter)

Password123

Sty

Internet IP address the
integration will be sending
requests from

§1.158.99.101

[image: image5.png]Method name Constant_name Subs:
getDeletedCustomers deletedCustomer
getDeletedDrivers deletedDriver
getDeletedOrders deletedOrder

getDeletedPpis deletedPOl
getDeletedSkrvicePlans deletedServicePlan
getDeletedUsers deletedUser
‘getDeletedVehicles. deletedVehicle
getDeletedlessages deletedMessage
getDeletedFormMessages deletedFomMessage
getDeletedAlams deletedAlarm
getDeletedDTMAIamS deletedDTMATarm
gethodifiedCustomers modifiedCustomer
‘gethodifiedDrivers ‘modifiedDriver
getCreatedOrders modifiedOrder
gethodifiedOrderttems ‘modifiedOrderttems
gethodifiedPois modifiedPOl
getModifiedServicePlans ‘modifiedServicePlan
gethodifiedUsers modifiedUser
gethodifiedVehicles ‘modifiedVehicle s
getNewAlarms newAlam
‘getNewDriverReportData newDriverData
getNewDTWAIams newDTMATarm
getNewDTMAlzrmSetupSendstatuses | newDTMAlarmSetupSendstatus
getNewMessages newllessage X
getNewFormMessages newFormMessage
getNewMessagesSendstatus newessageSendStatus
‘getNewFormMiessageSendstatus newFomMessageSendStatus
getNewVehicleReportData newVehicleReportData
getNewTrackingData newTrackingData
getOrdersharkedAsRead orderl/arkedAsRead

1.1.2 Use case description

For each use case that includes an API function call that is implemented, fill in:
· The name of the use case
· A textual description of the use case
· Requirement/Precondition(s)

· An algorithm (PDL/meta code/pseudo code)
· Frequency of how often the function will be used
· A list of API services and associated methods intended to be used
Form templates can be found in Appendix B in this document.
Example of a Use Case description.
[image: image6.png]Name UC_ChecklVlessagesAndReply
Description Checks for and replies to messages from specific user
Precondition Toggedin
Algorithm While logged in
o Check Tornew messages (1) %(E
If new messages exisis
Feich new messages (2)
Ifany from some specific user
Send reply (3)
On error sending, repeat 2 times:
Sleep 5 seconds
Ty again
Sleep 60 secods
Usage frequency During working hours 0800-1700 once every 60 seconds
icesimethods NofificationServiceBinding checkNotificationFlags (1)
included MessageSenviceBinding getNewlessages (2)
MessageSeviceBinding sendessageToUser (3)
Validation remarks Leave empty, will be filled in by Volvo

1.2 Validation Period
The purpose of the integration validation is to make sure that the client integration performs as agreed and also in the correct manner towards the Dynafleet Online web service. The time plan for the validation period depends on the size and complexity of the integrated software.
During the validation period the integrated software should be used according to the specified functions and simulate daily operation. During the validation Volvo will analyze the integration by checking logs from the DFOL Web Service and compare them with the information in the pre-validation form use cases.
1.3 Validation Result
After the validation period has been completed and Volvo have analysed the integration, a “Go” or “No go” approval for moving the integration into the Dynafleet Online production server will be given.
In case of a “No go”, Volvo will provide the customer/developer with required changes needed to the integration that has to be applied before moving on to the next step.
If the integration performs satisfactory to all involved parties during the validation and a “Go” approval have been supplied by Volvo the integrated software can be activated in the DFOL Production server.
2 Activation in production
Volvo will at this stage provide access to the live Dynafleet Online production environment (www.dynafleetonline.com). At this point no additional functions or changes to functions interacting with the DFOL Web server may be done in the integrated software. The only allowed modification will be to update the software to communicate with the DFOL production web service instead of the DFOL pre-production web service, updating WSDL document:
https://api2.dynafleetonline.com/wsdl
The end customer can at this point start working with the integration.
3 Appendix A: Integration Description
Fill in the table below according to the instructions in section 1.1.1 in this document.
	Time interval for Preproduction traffic to be validated (min. 2 hours)

	From
(YYYY-MM-DD, hh:mm)
	

	To
(YYYY-MM-DD, hh:mm)
	

	Time Zone
(GMT +/- h)
	

	API user in Preproduction environment
	

	Integration client platform

	Lua 5.3, C

	 Details

	OS: Debian 9 GNU/Linux

	Application type

	Event driven

	 Details

	The integration client is a C-application, runnig as daemon, where the user can create one or more “channel” to request and store data from other platforms. In our case the “channel” is a Lua script which is performing "login" and then running infinity loop to perform "checkNotificationFlags" every 10 seconds. When "checkNotificationFlags" returns new data status in “newTrackingData”, the script performing "getVehiclesV2" and "getNewTrackingDataV2" to fetch vehicles list and their last tracking data.

	Target fleet size

	

	 Details

	

	Wanted login name on API user in Production environment
NOTE: one API user for each customer/fleet using the integration is needed, as each API user is linked to one fleet only.
	

	Wanted API user password
(can be modified later)
	

	Internet IP address the integration will be sending requests from
	193.193.165.35

Mark in the table below with which Notifications your integration application is listening (subscribing) to.
	Method name
	Constant name
	Subscribing

	getDeletedCustomer
	deletedCustomer
	

	getDeletedDriver
	deletedDriver
	

	getDeletedOrders
	deletedOrders
	

	getDeletedPois
	deletedPois
	

	getDeletedServicePlans
	deletedServicePlans
	

	getDeletedUsers
	deletedUsers
	

	getDeletedVehicles
	deletedVehicles
	

	getDeletedMessages
	deletedMessages
	

	getDeletedFormMessages
	deletedFormMessages
	

	getDeletedAlarms
	deletedAlarms
	

	getDeletedDTMAlarms
	deletedDTMAlarms
	

	getModifiedCustomer
	modifiedCustomer
	

	getModifiedDriver
	modifiedDriver
	

	getModifiedOrders
	modifiedOrders
	

	getModifiedOrderItems
	modifiedOrderItems
	

	getModifiedPois
	modifiedPois
	

	getModifiedServicePlans
	modifiedServicePlans
	

	getModifiedUsers
	modifiedUsers
	

	getModifiedVehicles
	modifiedVehicles
	

	getModifiedAlarms
	modifiedAlarms
	

	getNewAlarms
	newAlarms
	

	getNewCustomer
	newCustomer
	

	getNewDriverReportData
	newDriverData
	

	getNewDTMAlarms
	newDTMAlarms
	

	getNewDTMAlarmSetupSendStatuses
	newDTMAlarmSetupSendStatuses
	

	getNewMessages
	newMessages
	

	getNewFormMessages
	newFormMessages
	

	getNewMessageSendstatus
	newMessageSendstatus
	

	getNewVehiclesReportData
	newVehiclesReportData
	

	getNewTrackingData
	newTrackingData
	X

	getOrdersMarkedAsRead
	orderMarkedAsRead
	

	getNewVehiclePositioningPlusData
	newVehiclePositioningPlusData
	

	getModfiedGeofencePlus
	modGeofencePlus
	

	getDeletedGeofencePlus
	delGeofencePlus
	

	getNewGeofencePlusData
	newGeofencePlusData
	

	getNewVehicleEventMessages
	newVehicleEventsMessages
	

	getNewGeofenceData
	newGeofenceData
	

4 Appendix B: Integration Use Cases
Fill in the use cases or functions that call the DFOL API in your integration below according to section 1.1.2 in this document. Add more pages if required.
	Name
	Log in (mandatory Use Case)

	Description

	Log in to DFOL

	Precondition

	* ”channel” is enabled
* no other running ”channel” instance

	Algorithm
	Perform LoginServiceBinding.login SOAP call to obtain “SessionId”

	Usage frequency

	Once every 30 seconds

	Services/methods included
	LoginServiceBinding.login

	Validation remarks

	Leave empty, will be filled in by Volvo

	Name
	Fetch data

	Description

	Check new data available and fetch it

	Precondition

	* ”channel” is enabled
* Logged in

	Algorithm
	Check for new data according “newTrackingData” field
If new data available:
 Fetch vehicles list
 Iterate vehicles list and update VehicleId ==> VehicleVin mapping
 Fetch new tracking data
 Store each tracking record using VehicleVin from mapping

	Usage frequency

	Once every 10 seconds

	Services/methods included
	NotificationServiceBinding.checkNotificationFlags
VehicleAndDriverAdminServiceBinding.getVehiclesV2
TrackingServiceBinding.getNewTrackingDataV2

	Validation remarks

	Leave empty, will be filled in by Volvo

Page 12 of 12

